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Abstract

The Green�s function solution method is a direct and powerful tool for solving heat transfer problems associated
with flow through passages. It is also an equally powerful tool when these passages are filled with saturated porous

materials. The capability of the Green�s function solution is enhanced when it is used in conjunction with the method
of weighted residuals extended for this type of application. This study discusses the calculation of heat transfer to fluids

flowing through different porous passages by using this combined methodology. The numerical illustrations include the

study of heat transfer in isosceles triangular passages. Also, this methodology is equally applicable when the boundary

conditions are of the first, second, or third kind.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Variational calculus has been used in the past to

study various heat transfer problems. An early use of

variational calculus by Sparrow and Seigel [1] concerns

a determination of the heat transfer to fluid flow in rect-

angular ducts. Later, the finite element method has

evolved also based on variational calculus. Moreover,

the method of weighted residuals, often called the Galer-

kin method [2], is also based on variational calculus. The

Galerkin method has been often used to solve the Poi-

son�s equation. The method of weighted residuals was
extended for solving the eigenvalues problems in [3].
0017-9310/$ - see front matter � 2004 Elsevier Ltd. All rights reserv
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This study discusses the Green�s function solution for

flow through porous passages. A Green�s function solu-
tion, based on variational calculus, is a powerful tool to

study heat transfer in passages saturated with porous

materials.

In porous media applications, the study of heat trans-

fer in elliptical passages, using an extended weighted

residuals (EWR) method is in [4]. It reports the local

and average heat transfer coefficient due to a step change

in the temperature at the walls. The utilization of the

Green�s function solution enables one to extend the pro-
cedure to include the effect of frictional heating, variable

wall temperature, etc. [5].

The studies of heat transfer in the thermal entrance

region, in the presence of frictional heating and axial

conduction, are in Nield et al. [6] for parallel-plate chan-

nels and in Kuznetsov et al. [7] for circular pipes; they

studied different forms of frictional heating. This study
ed.
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Nomenclature

A area, m2

A matrix

aij elements of matrix A

B matrix

bij elements of matrix B

Bm coefficient

C duct contour, m

cp specific heat, J/kgK

D matrix

Da Darcy number, K=L2c
Dh hydraulic diameter 4A/C, m

dmj coefficient

dmj elements of matrix D

E matrix with elements eij
Ec Eckert number, U2/cpDT
eij elements of matrix E

fi, fj basis functions

h heat transfer coefficient, W/m2K

I minimization function

H triangle dimension in Fig. 1(b)
�h average heat transfer coefficient W/m2K

G Green�s function
i, j indices

K permeability, m2

ke effective thermal conductivity, W/mK

Lc characteristic length, m

M le/l
N matrix dimension

NuD Nusselt number, hDh/k

m,n indices

~n normal to surface

P matrix having elements pmi
Pe Peclet number, qcpLcU/k
p pressure, Pa

pmi elements of matrix P

ReD Reynolds number, qUDh/le

r radial coordinate, m

r0 pipe radius, m

S volumetric heat source, W/m3

S* frictional heating effect, Eq. (27b)

T temperature, K

Ti temperature at x = 0, K

U average velocity, m/s

U average value of �u
u velocity, m/s

�u �u ¼ lu=ðUL2cÞ
W dimension in Fig. 1(b)

x axial coordinate, m

�x x/(PeH) or �x ¼ x=ðPer0Þ
y,z coordinates, m

Greek symbols

dj velocity coefficient

gj basis functions for velocity

h (T � Tw/Ti � Tw)
km eigenvalues

l fluid viscosity, Ns/m2

le effective viscosity, Ns/m2

n dimensionless coordinate,

q density, kg/m3

U �op/ox

/ half apex angle

w eigenfunction

X pressure vector with element xi
xi element of vector X

Subscripts

B bulk

i inlet condition

S source effect

W wall or wall effect

w wall
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uses the modified form of the frictional heating effect

discussed in Al-Hadhrami et al. [8]. The studies related

to the thermally developing forced convection with con-

stant wall heat flux in parallel-plate channels and circu-

lar pipes are reported by Nield et al. [9]. General

information related to flow in porous passages is in

[10–12].

This paper discusses the combined effects of two

powerful mathematical procedures when applied to the

problems associated with flow through porous passages.

The Green�s function solution permits one to directly in-
clude thermal conditions at the wall, volumetric heat

sources that include frictional heating, and inlet temper-

ature distribution. The classical Green�s function, in [5],
applies to regular geometries when the separation of
spatial variables is possible. The EWR method is a uni-

fied solution technique that can be used for regular

geometries such as circular pipes, as well as, irregular

geometries such as triangular passages. Additionally,

the method of weighted residual simplifies the computa-

tion of the Green�s function. Of course this methodology
only applies to a system of linear partial differential

equations.
2. The working relations

Although the working relations are widely available

in the literature, their appearance in this paper is

for the convenience of identification of the working
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parameters in subsequent numerical analysis. Therefore,

a brief presentation of these relations is to appear a priori.

2.1. Governing momentum equation

For a fluid passage with a constant but arbitrarily

shaped cross-section as shown in Fig. 1(a), the Brink-

man momentum equation,

le
o2u
oy2

þ o2u
oz2

� �
� l
K
u� op

ox
¼ 0 ð1Þ

leads toward the computation of a fully developed veloc-

ity profile in which the pressure gradient U = �op/ox is a

constant. The dimensionless form of Eq. (1) is

M
o2�u
o�y2

þ o2�u
o�z2

� �
� 1

Da
�u� 1 ¼ 0 ð2Þ

wherein �y ¼ y=Lc, �z ¼ z=Lc M = le/l, �u ¼ lu=ðUL2cÞ, and
Da ¼ K=L2c is the Darcy number. Moreover, le is the
effective viscosity, l is the fluid viscosity, K the perme-

ability, and Lc is arbitrarily chosen as the characteristic

length. The solution of Eq. (2), with the boundary condi-

tion �u ¼ 0 at the wall, is often obtainable using the vari-

ational calculus and, by definition, the mean velocity is
xy 
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Fig. 1. Schematics of porous passages: (a) selected coordinates an

geometry and dimensions.
U ¼ 1

A

Z
A
udA: ð3Þ
2.2. Governing energy equation

Under steady-state condition and when thermophys-

ical properties are independent of temperature, the en-

ergy equation for fully developed and incompressible

flow is

qcpu
oT
ox

¼ o

ox
ke
oT
ox

� �
þ o

oy
ke
oT
oy

� �
þ o

oz
ke
oT
oz

� �
þ Sðx; y; zÞ; ð4Þ

where volumetric heat source S(x,y,z) represents the

contribution of frictional heating. The parameters qcp
and ke are the equivalent thermal capacitance and the

thermal conductivity, respectively. In the following

mathematical formulations, the parameters qcp and ke
may depend on y and z but remain independent of x.

Moreover, in this presentation, the contribution of axial

conduction deferred to the subsequent publications.

Accordingly, for convenience of mathematical formula-

tions, Eq. (4) reduces to
u (y) 

Flow

 Heated Region 

Tw = T2

 x 

W y 

z=Hy/W

u=0

d boundary conditions and (b) isosceles triangular passages,
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o

oy
ke
oT
oy

� �
þ o

oz
ke
oT
oz

� �
þ Sðy; z; xÞ ¼ qcpu

oT
ox

: ð5Þ

The solutions for Eqs. (2) and (5) appear later following

a brief presentation of a methodology that uses the var-

iational calculus.
3. Application of variational calculus

The emphasis of this analysis is to compute the

Green�s function in order to utilize the Green�s function
solution. For the purpose of the computation of the

Green�s function, Eq. (5), without the source term, is
of current interest. Because, once the Green�s function
is known, the Green�s function solution will provide

the contribution of any source term. A preliminary step

is to separate the axial variable in Eq. (5) and then the

temperature solution takes the following form,

T ðy; z; xÞ ¼ Wðy; zÞe�k2x: ð6Þ

In the absence of the source term, the substitution of

T(y,z;x) from Eq. (6) in Eq. (5) yields the relation

o

oy
ke
oW
oy

� �
þ o

oz
ke
oW
oz

� �
þ k2qcpuW ¼ 0: ð7Þ

In general, Eqs. (1) and (7) have similar forms and both

solutions are obtainable via a similar methodology. The

primary attention is directed toward the solution of Eq.

(7) subject to boundary conditions of the first, second

kind, or third kind. The variational calculus procedure

in [1,2] is modified and used to minimize the following

functional relation

I ¼
Z
A

ke
oW
oy

� �2

þ ke
oW
oz

� �2

� k2qcpuW
2

(

� 1
2

o

oy
ke
oW2

oy

� �
þ o

oz
ke
oW2

oz

� �� �)
dA; ð8Þ

where A is the cross-section area. Next, consider the

solution for function W to have the form

W ¼
XN
j¼1
djfjðy; zÞ: ð9Þ

A complete and linearly independent set of functions

fj (y,z), for j = 1,2, . . . ,N, is known as the basis functions
and their method of selection is to appear later.

Following the substitution of W from Eq. (9) in Eq.

(8), the minimization of functional I(d1,d2, . . . ,dN) re-
quires having

oI
odi

¼ 0; for i ¼ 1; 2; . . . ;N ð10Þ

and di is any one of the coefficients in Eq. (9). The differ-

entiation of I in Eq. (8), with respect to dj, leads toward

the relation
oI
odi

¼ 2

Z
A
ke

oW
oy

� �
ofi
oy

þ ke
oW
oz

� �
ofi
oy

� k2qcpuWfi

� �
dA

�
Z
A

o

oy
ke
oðWfiÞ
oy

� �
þ o

oy
ke
oðWfiÞ
oz

� �� �
dA ¼ 0

for i ¼ 1; 2; . . . ;N : ð11Þ

Note that, the first two terms within the first square

brackets have the form

kerW � rfi ¼ r � ½fiðkerWÞ	 � r � ðkerWÞfi
and, therefore, Eq. (11) takes the following form,

2

Z
A

o

oy
ke
oW
oy

� �
þ o

oy
ke
oW
oz

� �
þ k2qcpuW

� �
fi dA

� 2

Z
A
r � ½fiðkerWÞ	dAþ

Z
A
r � ½kerðWfiÞ	dA ¼ 0:

ð12Þ

Using the divergence theorem, the second integral in Eq.

(12) becomes

�2
Z
A
r � ½fiðkerWÞ	dA ¼ �2

Z
C
fiðkerWÞ �~nds

¼ �2
Z

C
fike

oW
on

ds: ð13aÞ

Similarly, using the divergence theorem, the third inte-

gral in Eq. (12) becomesZ
A
r � ½kerðWfiÞ	dA ¼

Z
C
ke
oðWfiÞ
on

ds

¼
Z

C
ke fi

oW
on

þ W
ofi
on

� �
ds: ð13bÞ

It is necessary for this boundary integral to vanish on

the boundary C. Accordingly, the functions fi(y,z)

should satisfy the conditions fi(yc,zc) = 0 for the bound-

ary conditions of the first kind and that makes the right

side of Eq. (13a) and Eq. (13b) vanish. For the boundary

conditions of the second kind, the selection of functions

ofi(yc,zc)/on = 0 make oW/on = 0 because of Eq. (9). For
the boundary condition of the third kind, keofi/on = �hfi
and keoW/on = �hW, where h is a constant coefficient;
this makes the magnitudes of the right sides in Eq.

(13a) and Eq. (13b) to become

2

Z
C
hf iWds;

the same for each fi but with different signs.

Finally, when the basis functions fj, in Eq. (9), are se-

lected to satisfy a boundary condition of the first, sec-

ond, or third kind, Eq. (12) reduces to the relation,

XN
j¼1
dj

Z
A

o

oy
ke
ofjðy; zÞ

oy

� �
þ o

oy
ke
ofjðy; zÞ

oz

� �� �
fi dA

	

þk2
Z
A

qcpuf jfi



¼ 0; for i ¼ 1; 2; . . . ;N : ð14Þ
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Eq. (14) represents a system of N equations for N + 1

unknowns that include the value of k2. In the matrix

form, Eq. (14) assumes the following form

ðA þ k2BÞ � d ¼ 0; ð15Þ

wherein the matrices A and B have the members

aij ¼
Z
A
fiðy; zÞr � ½kerfjðy; zÞ	dA

¼ �
Z
A
kerfiðy; zÞ � rfjðy; zÞdA ð16aÞ

and

bij ¼
Z
A

qcpuðy; zÞfiðy; zÞfjðy; zÞdA ð16bÞ

and the matrices A and B are symmetric [3]. In this for-

mulation, the parameters ke and qcp may have constant
values or depend on coordinates y and z. The unknown

coefficients (d1,d2, . . . ,dN) are the members of vector d.

Because A and B are symmetric, these coefficients and

the eigenvalues are obtainable from Eq. (15) following

the application of the Colesky decomposition technique

[3]. An alternative and simple procedure is to have an

alternative form of Eq. (15), that is

ðB�1A þ k2IÞd ¼ 0 ð17Þ

a standard eigenvalue problem whose N eigenvalues can

be determined by various numerical techniques.

The aforementioned formulation provides a unique

capability. This procedure equally applies to passages

of different cross-section profiles. They include passages

with regular boundaries such as circular passages and

passages with non-orthogonal boundaries such as trian-

gular, trapezoidal, and other similar profiles. For any

duct, the functions fj(y,z) are to be selected so that they

satisfy the homogeneous boundary conditions along the

surface of the ducts. Next, Eq. (17) can provide N eigen-

values for k2m and there exists N coefficients dmj to be

computed for each eigenvalue. Because the system is

linear, one coefficient is to be selected arbitrarily,

e.g. dmm = 1. Following the computation of k2m and dmj,
Eq. (9) is to be written for each eigenvalue k2m, that is,

Wm ¼
XN
j¼1
dmjfjðy; zÞ ð18Þ

and then, the temperature solution becomes

T ðy; z; xÞ ¼
XN
m¼1

BmWmðy; zÞe�k2mx: ð19Þ

In summary, the computation begins by finding the

elements of matrices, A and B, and, then, Eq. (17) yields

the eigenvalues k2m. For each eigenvalue, the correspond-
ing coefficients dmj serve as the eigenvector. If the eigen-

vectors are placed within a row of a matrix designated as

D, then the matrices B and D are numerically known
and one can obtain the matrix P = [(D ÆB)T]�1; that is,
the matrix D is multiplied by matrix B and the resulting

matrix is transposed and then inverted. By designating

the elements of matrix P as pmi, the coefficient Bm for

inclusion in Eq. (19) is

Bm ¼
XN
i¼1
pmi

Z
A

qcpuðy; zÞT ðy; z; 0Þfiðy; zÞdA: ð20Þ

When T(y,z; 0) is prescribed at inlet, the temperature

solution is obtainable [3] from the relation

T ðy; z; xÞ ¼ 1

qcp

Z
A

X1
m¼1

XN
i¼1
pmiqcpuðy0; z0Þfiðy0; z0Þ

" #

�
XN
j¼1
dmjfjðy; zÞ

" #
e�k2mxT ðy0; z0; 0ÞdA0: ð21Þ

The general formulation of the Green�s function solution
[3,5] is

T ðy; z;xÞ ¼ 1

qcp

Z x

n¼0
dn

Z
C
ke G

oT
on

� T oG
on

� �
C0
dC0

	

þ
Z x

n¼0
dn

Z
A
GSðy0; z0;nÞdA0

þ
Z
A
qcpuðy 0; z0ÞGðy; z;x j y0; z0;0ÞT ðy0; z0;0ÞdA0



:

ð22Þ

By retaining only the third term on the right side of the

Green�s function solution, then Eq. (22) describes the

same solution designated by Eq. (21) and; therefore,

their comparison shows the Green�s function,

Gðy; z; x j y0; z0; nÞ

¼
XN
m¼1

XN
i¼1
pmifiðy0; z0Þ

" #
Wmðy; zÞe�k2mðx�nÞ: ð23Þ

In these derivations, the fully developed velocity

u(y,z), appearing is Eqs. (20)–(22) is treated as a known

function. If the solution of Eq. (1) is not readily avail-

able, the computation of velocity u(y,z) follows a similar

procedure but with different numerical steps. For flow

through a porous passage, the minimization of the func-

tional I

I ¼
Z
A
ke

ou
oy

� �2

þ ke
ou
oz

� �2

þ l
K


 �
u2 þ 2

op
ox

� �
u

" #
dA;

ð24aÞ

as described earlier, leads to the relationZ
A

le
o
2u
oy2

þ o
2u
oz2

� �
� l
K
u� op

ox

� �
gi dA ¼ 0: ð24bÞ

The method of solution, using Eq. (24b), is known as the

method of weighted residuals or the Galerkin method.

It begins by setting
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uðy; zÞ ¼
XN
j¼1

djgjðy; zÞ: ð25Þ

For most cases, the basis function gj(y,z) for velocity, in
Eq. (25), is the same as fj(y,z) for temperature if its

boundary condition is of the first kind. For example,

they become different if velocity is zero at the wall while

the temperature gradient is zero there. Next, the substi-

tution of u(y,z) from Eq. (25) in Eq. (24b), leads to a set

of simultaneous equations and, in the matrix form, they

are

E � D ¼ X; ð26aÞ

where the matrix E has elements

eij ¼
Z
A
½legiðy; zÞr2gjðy; zÞ � lgj=K	dA ð26bÞ

the vector X has elements

xi ¼
op
ox

� �Z
A

giðy; zÞdA ð26cÞ

while the unknowns, (d1,d2, . . . ,dN), are the elements of
vector D = E�1 ÆX.

Following the determination of the Green�s function,
Eq. (23), the temperature solution, Eq. (22), is known.

The application of energy balance on a fluid element

leads toward the evaluation of the heat transfer coeffi-

cient. It is best to accomplish this task in the dimension-

less space. Therefore, it is necessary to define a

characteristic length Lc and a dimensionless temperature

h = (T � T2)/(T1 � T2) where T1 and T2 5 T1 are two

constant temperatures. In the subsequent formulations,

T1 stands for the inlet temperature and T2 stands for

the wall temperature. One can define other dimensionless

quantities �y ¼ y=Lc, �z ¼ z=Lc, M = le/l, Da ¼ K=L2c ,
ReD = qUDh/le, Pr = lecp/ke, Ec = U

2/[cp(T1 � T2)] and
�x ¼ ðx=DhÞ=ðReDPrÞ, the local heat transfer coefficient
is

NuD ¼ hDh
k

¼ � 1

4

� �
dhbð�xÞ=d�x

hbð�xÞ

� �
þ Dh

2Lc

� �2 EcPr
hbð�xÞ

� �
S�; ð27aÞ

that includes the effect of frictional heating since

S� ¼ 1

A

Z
A

ðu=UÞ2

MDa
þ oðu=UÞ

o�y

� �2

þ oðu=UÞ
o�z

� �2
" #

d�y d�z

ð27bÞ

wherein A is the dimensionless area. This method of

analysis is used also to solve transient heat conduction

problems in [3] and it is an extension of the method of

weighted residuals. As shown in [4], in comparison with

the exact series solution, it provides acceptable accura-

cies at larger values �x and better accuracies at smaller
�x, when using the same number of eigenvalues. Another
interesting feature is embedded in the details of the com-

putational procedure. Except for the basis function and

integration over the specific domain, all other steps are

the same for all cases studied.

The method of selecting the basis functions, for the

boundary conditions of the first kind, is widely available

in the literature; see the Galerkin method in [2]. A pro-

cedure for selecting basis functions for the boundary

conditions of the second kind is in [3, p. 342] and for

the boundary conditions of the third kind is in [3, p.

345]. The primary illustration is devoted to selection of

the basis functions for the boundary conditions of the

first kind at the wall for a few selected passages. They

are

1. For flow between two parallel plates with walls

located at y = ±H,

fj ¼ ½1� ðy=HÞ2	ðy=HÞ2ðj�1Þ with j ¼ 1; 2; . . . ;N :

2. For a circular pipe with radius r0, the basis functions

are similar,

fj ¼ ½1� ðr=r0Þ2	ðr=r0Þ2ðj�1Þ with j ¼ 1; 2; . . . ;N :

3. For a rectangular passage with walls located at

y = ±a and z = ±b,

fj ¼ ða2 � y2Þðb2 � z2Þy2ðmj�1Þz2ðnj�1Þ;

using all combination of mj and nj.

4. For an elliptical passage with the wall being at

(y/a)2 + (z/b)2 = 1,

½1� ðy=aÞ2 � ðz=bÞ2	y2ðmj�1Þz2ðnj�1Þ;

using all combinations of mj and nj.

5. For an isosceles triangular passage with walls located

at z = ±by/a and z = b,

½z2 � ðby=aÞ2	ðz� bÞy2ðmj�1Þzðnj�1Þ;

using all combinations of mj and nj.

In general, any independent and complete set of func-

tions can serve as the basis functions. For example,

cos[(j � 1/2)py/H] and cos [(j � 1/2)pr/r0] can replace

those listed above for parallel-plate channels and circu-

lar passages, respectively.
4. Numerical illustrations

Having an ordered set of basis functions, Eqs. (25)

and (26) yield the velocity distribution. The next step

is the computation of matrices A and B using Eqs.

(16a) and (16b). These and other major operations are

summarized and shown for one and two-dimensional

passages.
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4.1. One-dimensional passages

These types of passages are useful mainly to evaluate

the accuracy of this procedure before applying it to more

difficult problems. The examples for this case are limited

to parallel-plate channels and circular pipes for which an

exact solution is available. This enables one to compare

the computed results to evaluate the accuracy as well as

the utility of this EWR technique.

4.1.1. Numerical Example 1

In this example, the study of heat transfer in circular

pipes, whenMDa =1, is selected for two reasons: (a) to

demonstrate the procedure and (b) to investigate the

accuracy of this methodology by comparing the results

with those from exact analysis. A brief Mathematica

program [13] written to perform the basic steps for a cir-

cular pipe when e = 1 and for a parallel-plate channel

e = 0.

(*amat = A, bmat = B. dmat = D, pmat = P,

cap = capacitance/ke, u = velocity, eigv = eigenvalues

vector *)

Off[General::spell1];

e = 1; n = 10; cap = 1; u = (3/2 + e/2)*(1�r^2); uav = 1;
fi = (1�r^2)*r^(2*i � 2); fj = (1�r^2)*r^(2*j � 2);

oper = Simplify[fi*(r^e*D[D[fj, r], r]+e*D[fj, r])];

amat = Table[Integrate[oper, {r,0,1}], {i,1,n}, {j,1,n}];

bmat = Table[Integrate[cap*u*r^e*fi*fj/uav, {r, 0,1}],

{i, 1,n}, {j, 1,n}];

amat = N[amat,300]; bmat = N[bmat,300];

eigv = N[Eigenvalues[-Inverse[bmat].amat]];
Table 1

A comparison of the first 40 eigenvalues for circular porous passages

m EWR method Exact

1 3.6567935 3.6567935

2 22.304731 22.304731

3 56.960515 56.960515

4 107.62027 107.62027

5 174.28206 174.28206

6 256.94503 256.94503

7 355.60877 355.60877

8 470.27303 470.27303

9 600.93767 600.93767

10 747.60260 747.60260

11 910.26775 910.26775

12 1088.9331 1088.9331

13 1283.5986 1283.5986

14 1494.2642 1494.2642

15 1720.9298 1720.9298

16 1963.5956 1963.5956

17 2222.2636 2222.2615

18 2497.0160 2496.9274

19 2789.3513 2787.5933

20 3110.6168 3094.2594
dmat = Eigenvectors[-Inverse[bmat].amat];

pmat = Inverse[Transpose[dmat.bmat]];

This program is in dimensionless space by setting r0 = 1

and u stands for u/U. It is remarkable that these few

statements produce all needed information to get the

Green�s function from Eq. (23). Currently, this program

is for an unobstructed circular pipe since e = 1 and it be-

comes the solution for a parallel-plate channel by setting

e = 0. The remaining steps are the evaluation and utiliza-

tion of computed temperature and they begin by using

Eq. (22); they are

Do[psi[ne] = Sum[dmat[[ne, j]]*fj, {j, 1,n}], {ne, 1,n}];

temp = Sum[psi[ne]*Exp[-eigv[[ne]]*x]*Sum[pmat[

[ne, i]]*Integrate[r^e*cap*fi*u/uav,

{r, 0, 1}], {i, 1,n}], {ne, 1,n}];

tbulk = (1 + e)*Integrate[r^e*temp*u/uav, {r, 0,1}];

Table 1 shows a set of 40 eigenvalues computed by the

EWR method for a circular passage. They are compared

to the first 40 eigenvalues obtained by the exact analysis

[14]. The selection of an unobstructed circular pipe elim-

inates the expected numerical error because the values of

aij and bij are determined exactly. The first 16 eigenvalues

in Column 2 have the same 8 significant figures as those

in Column 3. Indeed, the first eigenvalue k21 for EWR is

3.6567934577632926 when using 40 terms and, when

using 70 terms, it becomes 3.656793457763292361. The

two computed values of k21 compare favorably with

3.656793457763292362 obtained through exact analysis.

Beyond 16, the EWR eigenvalues begin to increase faster

than those by exact analysis; for the 40th eigenvalue the
m EWR method Exact

21 3494.4736 3416.9254

22 3985.4293 3755.5915

23 4626.1452 4110.2576

24 5468.0498 4480.9238

25 6585.1737 4867.5900

26 8088.7458 5270.2562

27 10149.731 5688.9224

28 13037.954 6123.5887

29 17193.062 6574.2550

30 23358.930 7040.9213

31 32851.305 7523.5876

32 48123.367 8022.2539

33 74048.592 8536.9202

34 121092.65 9067.5866

35 214044.37 9614.2530

36 419598.56 10176.919

37 951155.63 10755.586

38 2686677.0 11350.252

39 11045617.1 11960.919

40 97924166.7 12587.585



Table 2

A comparison of computed local and average Nusselt numbers by EWR method and exact analysis

(x/r0)/Pe Local Nu Average Nu Exact solutiona

EWRb Exactb EWRb Exactb Local Nu Average Nu

0.000001 169.856 43.6241 255.240 1426.46 155.009 236.929

0.00001 78.2216 42.3854 117.867 217.150 78.2213 117.867

0.0001 35.8059 33.4468 54.1737 55.4381 35.8059 54.1736

0.001 16.2640 16.2640 24.7226 24.7226 16.2640 24.7225

0.01 7.47038 7.47038 11.2690 11.2690 7.47038 11.2690

0.1 4.00463 4.00463 5.46820 5.46820 4.00463 5.46820

1 3.65679 3.65679 3.85640 3.85640 3.65679 3.85640

10 3.65679 3.65679 3.67675 3.67675 3.65679 3.67675

a Exact solution using 500 eigenvalues, k2500 ¼ 1:9973342� 106.
b Using 40 eigenvalues.
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difference is very significant. The larger eigenvalues

would permit acquisition of more accurate data as

�x ¼ ðx=r0Þ=Pe becomes very small.
To demonstrate the accuracy of these two methods,

Table 2 presents the values of the local and average

Nusselt numbers for a relatively large range of ~x.
When �x P 10�3, the recorded data in columns 2 and

3, for the local Nusselt number, and in columns 4

and 5, for the average Nusselt number, are the same.

However, these Nusselt number data begin to depart

from each other as ~x decreases. When �x 6 10�5, the

difference becomes very large. In the exact analysis,

the eigenvalues rapidly approach km ffi ½4ðm� 1Þþ
8=3	=

ffiffiffi
2

p
as m in Eq. (23) becomes large, indicating a

constant spacing ffi 4=
ffiffiffi
2

p
; whereas, in the EWR meth-

od, the spacing between eigenvalues increases as m in-

creases. Setting e = 0 in this Mathematica program for

flow between parallel plates, the larger computed

eigenvalues also depart from km ffi ½4ðm� 1Þ þ 5=3	=ffiffiffiffiffiffiffiffi
3=2

p
that describes a limit for the eigenvalues from

exact analysis.

To verify the accuracy of the tabulated data, the local

and average Nusselt numbers are computed, by exact

analysis, using 500 eigenvalues and they are tabulated

in columns 6 and 7. Since the largest eigenvalue for

m = 500 is k2500 ¼ 1:997� 106, good accuracy is expected

at �x ¼ 10�4 and, at this value of �x, the data agree favor-
ably with EWR data in Columns 2 and 4. Also, it is

appropriate to demonstrate the accuracy of EWR data

by increasing the number of eigenvalues. Repeating the

EWR procedure when N = 60, all computed values

agree with those in Table 2 except for �x ¼ 10�6, at

which, the computed local and average Nusselt numbers

are 169.761 and 255.212, respectively. These also agree

reasonably well with 169.856 and 255.240 entries in

Table 2. Moreover, increasing the number of terms to

N = 70, with k270 ¼ 2:5615� 109, produced the above re-

sults obtained for N = 60, with k260 ¼ 1:0373� 109. This

presents significant information as this minimization
concept increases the size of the larger eigenvalues in or-

der to enhance the accuracy of the computed data within

the computational domain.

When using Eq. (22) to compute the temperature dis-

tribution, the first two terms on the right side require

integration over the axial coordinate from 0 to x. Often,

the upper limit, following integration, does not converge

to its fully-developed value. Remedial steps to improve

the convergence for the exact analysis are in [5]. How-

ever, the EWR method does converge to its fully devel-

oped value as x becomes large. As an illustration, for

pipe plow in Example 1, the dimensionless wall heat flux

due to frictional heating alone has a value of 4 when

x =1. Using 60 terms, the exact solution of dimension-

less wall heat flux is 3.75; however, the EWR method

produced the correct value of 4 with no need for a reme-

dial step.
4.2. Two-dimensional passages

The application of Eqs. (22) and (23) leads to a tem-

perature solution in two-dimensional passages. When Lc
is a characteristic length and the hydraulic diameter is

Dh = 4A/C, using the dimensionless quantities �y¼ y=Lc,
�z¼ z=Lc, and �x¼ðx=DhÞ=ðReDPrÞ, Eq. (5) takes the

form

Dh
Lc

� �2
o2T
o�y2

þ o2T
o�z2

� �
þ Sð�y;�z; �xÞ ¼ oT

o�x
; ð28aÞ

where Sð~y;�z; �xÞ ¼ D2
hSðy; z; xÞ=ke is the dimensionless vol-

umetric heat source,

Sð~y;�z; �xÞ ¼ leðUDhÞ2

keL2c

ðu=UÞ2

MDa
þ oðu=UÞ

o�y

� �2
"

þ oðu=UÞ
o�z

� �2
#
: ð28bÞ
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Fig. 2. Computed Nusselt numbers for flow through isosceles triangular passages with 2/ = 30�: (a) local values and (b) average
values.
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Following the computation of the velocity and tem-

perature distributions, Eq. (27a) provides the value of

the Nusselt number. Once the bulk temperature is

known, the energy equation as applied to a volume ele-

ment leads to the relation

qwCdxþ dx
Z
A

lu2=K þ le½ðou=oyÞ
2 þ ðou=ozÞ2	

n o
dA

¼ qAUc dT ; ð29aÞ
p b
where qw is the circumferentially averaged wall heat flux.

In dimensionless form, Eq. (29a) becomes

qwDh

keðT 1 � T 2Þ
¼ � lecp

ke

� �
U 2ðDh=LcÞ2

4cpðT 1 � T 2Þ
S�

þ 1

4
ReDPr

d½ðT b � T 2Þ=ðT 1 � T 2Þ	
dðx=DhÞ

¼ � Dh

2Lc

� �2

PrEcS� þ 1

4

dhb
d�x

; ð29bÞ
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Fig. 3. Computed Nusselt numbers for flow through isosceles triangular passages with 2/ = 60�: (a) local values and (b) average
values.
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where S* was defined in Eq. (27b) and hb = (Tb � T2)/

(T1 � T2). Since S* in Eq. (27b) is a constant and

hb(0) = 0, the integration of this relation is readily avail-
able from the relation

�qwDh
keðT 2 � T 1Þ

¼ 1

�x

Z �x

�x¼0

qwDh

keðT 2 � T 1Þ
d�x

¼ � Dh

� �2

PrEcS� þ 1
h ð�xÞ: ð30Þ
2Lc 4
b

4.2.1. Numerical Example 2

To demonstrate the utility of this solution method, it

is appropriate to study heat transfer to a fluid passing

through a passage and there is no classical exact solution

available. For this reason, isosceles triangular passages

filled with saturated porous materials are being consid-

ered. The cross-section of this passage is shown in Fig.

1(b). Of course, when 2/ = 60� then W ¼ H=
ffiffiffi
3

p
, and

the fully developed velocity profile has an exact solution

for an unobstructed channel, it is
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u ¼ �H 2

4l
op
ox

� �
1� y

W


 � y
W


 �2
� 3

x
W


 �2� �
: ð31Þ

However, in general and specifically for flow through a

porous passage, Eqs. (24)–(26) would provide the veloc-

ity distribution. The procedure is similar to that de-

scribed for flow through the circular passages. There

are a few modifications: first, to provide a fully devel-

oped velocity profile for the given configuration. Next,

one must select an appropriate set of basis functions

and perform all area integrations over the specified tri-
angular domain. All other steps remain as described in

Example 1.

This example considers the effects of wall tempera-

ture change and volumetric heat source when using the

boundary condition of first kind. It considers two effects:

one due to a temperature change at the wall and the sec-

ond due to the frictional heating. First, consideration is

given to a case when the fluid has a constant tempera-

ture T1 at x = 0 and the wall temperature remains at

T = T1 until at x = x0 where there is a surface tempera-

ture change T = T2. Next, the effect of frictional heating
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is to begin at x = 0 and remains throughout the passage.

Using a dimensionless temperature h = (T � T1)/

(T2 � T1), in Eq. (22), the effect of temperature change

at the wall is

T � T 2
T 1 � T 2

¼
Z W

y¼0

Z H

Hy=W
uðy0; z0Þ

� Gðy; z; x� x0 j y0; z0; 0Þdy0 dz0 ð32aÞ

that yields

T � T 1
T 2 � T 1‘

¼ 1� T � T 2
T 1 � T 2

¼ 1�
Z W

y0¼0

Z H

z0¼Hy=W
uðy0; z0Þ

� Gðy; z; x� x0 j y0; z0; 0Þdy0 dz0: ð32bÞ

The contribution of the volumetric heat source, to be

added to this equation, is
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Fig. 5. Local and average wall heat flux due to frictional

heating for flow through isosceles triangular passages: (a) with

2/ = 30�, (b) with 2/ = 60�, and (c) with 2/ = 90�.
Z x

n¼0

Z W

y0¼0

Z H

z0¼Hy=W

l½uðy0; z0Þ	2

K
þ le

ouðy0; z0Þ
oy0

� �2
"(

þ ouðy0; z0Þ
oz0

� �2
#)

� Gðy; z; x j y0; z0; nÞdz0 dy 0 dn ð33Þ

and the functional form of G(y,z,xjy 0,z 0,n) is in Eq. (23).
The program to perform these computations was also

written in Mathematica symbolic computer language

[13]. First, a velocity profile was computed in accordance

to Eqs. (25) and (26). Basically, the same program pre-

sented in Example 1 was used to compute the temperature

distribution except for obvious modifications. They are:

(a) using an appropriate set of basis functions for isosceles

triangular passages and (b) performing the integrations

over the cross-section of an isosceles triangular passage.

To show the effect of a temperature change at the

wall, the local and average Nusselt numbers are com-

puted. Indeed, a local heat flux, in this example, is a cir-

cumferentially averaged quantity used to determine the

local Nusselt number. Basic heat transfer information

are prepared for three isosceles triangular passages,

2/ = 30�, 60�, and 90�. When 2/ = 30� and with no fric-
tional heating effects, Fig. 2(a) shows the value of the

local Nusselt number as a function of the axial coordi-

nate for different values of MDa;= (le/l)(K/H
2). It is

prepared following the computation of bulk tempera-

ture. Fig. 2(b) shows the variation of average Nusselt

number for the same range of variables as in Fig. 2(a).

The computation of local and average Nusselt numbers

are repeated for angle 2/ = 60� for which the fully devel-
oped velocity profile is known and the results are in Fig.

3(a) and (b). Similarly, the data in Fig. 4(a) and (b) show

the local and average Nusselt numbers for a larger angle

2/ = 90�.
The second part of this example is devoted to the

computation of bulk temperature solely due to the effect

of frictional heating. In the absence of a wall tempera-

ture change and for convenience of the presentation,

Eq. (29b) takes an alternative form,

qwDh

leU
2
¼ � Dh

2Lc

� �2

S� þ 1

4

d½ðT b � T 1Þ=ðleU 2Þ	
d�x

: ð34Þ

Fig. 5(a) depicts the values of the dimensionless local

heat flux qwDh/(leU
2) and average heat flux �qwDh=

ðleU 2Þ when 2/ = 30�. The data show the influence of

the same set of MDa values as plotted in Fig. 2(a),

but not whenMDa = 0. The computations are repeated

for 2/ = 60� and 90�; Fig. 5(b) is for 2/ = 60� and Fig.
5(c) is for 2/ = 90�.
5. Discussion and comments

A summary of the computed values is prepared in

order to illustrate the numerical characteristics of the
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dimensionless quantities. The data in Figs. 2–5 are ac-

quired using the basis function

½z2 � ðHy=W Þ2	ðz� HÞy2ðmj�1Þzðnj�1Þ

with mj = 1,2, . . . , 8 and nj = 1,2, . . . , 15. Therefore, 120
basis functions make the working matrices of the size

120 · 120. Selected computations were repeated using

91 basis functions in order to verify the accuracy of

the results. Small deviations were observed at small val-
Table 3

Selected heat transfer variables for isosceles triangular passages when

MDa �x NuD NuD hb,I

1/10000 0.0001 36.363 56.616 0.97761

0.001 15.392 24.425 0.90692

0.01 6.4922 10.314 0.66195

0.1 3.8504 4.9469 0.13824

1 3.7567 3.8798 1.82 · 1
10 3.7567 3.7690 3.35 · 1

1/1000 0.0001 26.624 41.371 0.98359

0.001 11.844 18.348 0.92924

0.01 5.3351 8.1326 0.72231

0.1 3.2380 4.1049 0.19360

1 3.1413 3.2423 2.33 · 1
10 3.1413 3.1514 1.80 · 1

1/100 0.0001 21.126 32.528 0.98707

0.001 9.4013 14.553 0.94345

0.01 4.2664 6.4870 0.77145

0.1 2.5654 3.2679 0.27059

1 2.4855 2.5675 3.47 · 1
10 2.4855 2.4937 4.79 · 1

1/10 0.0001 19.593 30.135 0.98802

0.001 8.7094 13.485 0.94749

0.01 3.9497 6.0097 0.78632

0.1 2.3681 3.0204 0.29875

1 2.2973 2.3728 7.55 · 1
10 2.2973 2.3049 9.12 · 1

1 0.0001 19.389 29.824 0.98814

0.001 8.6189 13.346 0.94802

0.01 3.9091 5.9478 0.78827

0.1 2.3435 2.9891 0.30252

1 2.2741 2.3487 8.32 · 1
10 2.2741 2.2815 2.32 · 1

10 0.0001 19.368 29.792 0.98815

0.001 8.6095 13.331 0.94807

0.01 3.9049 5.9414 0.78847

0.1 2.3410 2.9858 0.30291

1 2.2717 2.3462 8.40 · 1
10 2.2717 2.2791 2.56 · 1

1 0.0001 19.365 29.788 0.98816

0.001 8.6085 13.330 0.94808

0.01 3.9044 5.9407 0.78850

0.1 2.3407 2.9855 0.30295

1 2.2714 2.3459 8.41 · 1
10 2.2714 2.2789 2.58 · 1
ues of �x. For 2/ = 30�, Table 3 shows the computed
numerical values using a relatively small range of the

axial coordinate and MDa values. When MDa =1,

the data in Table 3 agree well with those reported in [15].

In this example, the data related to local and average

Nusselt numbers are valid when heating (or cooling) be-

gins at x = x0 and 0 6 x0 61. Accordingly, the coordi-

nate �x is defined so that the heating begins at the

dimensionless axial coordinate �x ¼ ½ðx� x0Þ=Dh	=
2/ = 30�

q�w �q�w hb,S

19.108 14.700 0.18079

49.928 34.580 1.7284

160.22 106.60 14.403

402.47 298.67 67.202

0�7 466.67 445.64 84.131

0�66 466.67 464.57 84.131

4.0146 3.1625 0.022084

7.8467 6.0371 0.20934

18.749 13.382 1.7996

47.590 34.737 9.4540

0�6 58.371 55.159 12.851

0�55 58.372 58.050 12.851

1.5193 1.1806 0.0044935

2.8878 2.2648 0.040598

5.2633 4.1674 0.32988

9.9659 7.8213 1.8372

0�5 12.414 11.711 2.8126

0�44 12.414 12.344 2.8127

1.1750 0.90704 0.0024949

2.2674 1.7710 0.021493

3.9496 3.2019 0.15770

6.1154 5.1686 0.79025

0�5 7.1440 6.8363 1.2318

0�41 7.1443 7.1135 1.2320

1.1384 0.87800 0.0022865

2.2026 1.7190 0.019501

3.8215 3.1056 0.13954

5.7333 4.9093 0.67396

0�5 6.5939 6.3325 1.0465

0�40 6.5942 6.5680 1.0466

1.1348 0.87508 0.0022655

2.1961 1.7138 0.019300

3.8087 3.0960 0.13772

5.6951 4.8834 0.66217

0�5 6.5386 6.2819 1.0276

0�40 6.5388 6.5132 1.0277

1.1344 0.87475 0.0022632

2.1954 1.7132 0.019278

3.8073 3.0949 0.13751

5.6909 4.8806 0.66085

0�5 6.5325 6.2763 1.0255

0�40 6.5327 6.5071 1.0256
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ðReDPrÞ. However, the frictional heating generally

begins at x = 0 and in dimensionless form, the coordi-

nate �xþ �x0 ¼ ðx=DhÞ=ðReDPrÞ stands for the physical

coordinate x. In these tables, the dimensionless heat flux

values are designated as q�w ¼ qwDh=ðleU 2Þ and �q�w ¼
�qwDh=ðleU 2Þ. The data include the dimensionless bulk
temperature hb,w = (Tb � T1)/(T2 � T1) = 1�hb,i due the
wall temperature change alone while hb,s = [(Tb � T1)/

(T2 � T1)]/(PrEc) or hb,s = ke(Tb � T1)/(leU
2) due to
Table 4

Selected heat transfer variables for isosceles triangular passages when

MDa �x NuD NuD hb,I

1/10000 0.0001 41.319 63.495 0.97492

0.001 16.690 27.179 0.89698

0.01 6.7860 11.064 0.64241

0.1 4.1509 5.2373 0.12308

1 4.1298 4.2410 4.29 · 10
10 4.1298 4.1409 1.16 · 10

1/1000 0.0001 30.992 47.080 0.98134

0.001 13.300 20.740 0.92039

0.01 5.9064 9.0943 0.69505

0.1 3.6814 4.5796 0.16012

1 3.6553 3.7483 3.08 · 10
10 3.6553 3.6646 2.19 · 10

1/100 0.0001 23.182 35.594 0.98586

0.001 10.271 15.829 0.93865

0.01 4.6695 7.0771 0.75346

0.1 2.9217 3.6281 0.23428

1 2.8960 2.9698 6.93 · 10
10 2.8960 2.9034 3.65 · 10

1/10 0.0001 20.214 31.095 0.98764

0.001 9.0172 13.888 0.94596

0.01 4.1190 6.2296 0.77944

0.1 2.5747 3.1983 0.27823

1 2.5514 2.6167 2.85 · 10
10 2.5514 2.5580 3.66 · 10

1 0.0001 19.7552 30.373 0.98792

0.001 8.8196 13.578 0.94714

0.01 4.0345 6.0968 0.78359

0.1 2.5240 3.1339 0.28548

1 2.5012 2.5650 3.501 · 1
10 2.5012 2.5076 2.75 · 10

10 0.0001 19.706 30.295 0.98796

0.001 8.7985 13.545 0.94726

0.01 4.0255 6.0827 0.78403

0.1 2.5187 3.1271 0.28626

1 2.4959 2.5596 3.58 · 10
10 2.4959 2.5023 3.40 · 10

1 0.0001 19.701 30.286 0.98796

0.001 8.7962 13.541 0.94728

0.01 4.0245 6.0811 0.78408

0.1 2.5181 3.1264 0.28635

1 2.4953 2.5590 3.59 · 10
10 2.4953 2.5017 3.48 · 10
the sole effect of the frictional heating. Of course the

actual bulk temperature is the sum of these two bulk

temperatures at xP x0 for all values of x0. The data

in Table 3 are prepared when 2/ = 30�. When 2/
= 60�, the corresponding data are in Table 4, and when
2/ = 90�, they are in Table 5. The data in these tables
are accurate to all 5 reported digits when �x is rela-
tively large. However, when �x is very small, the accuracy
reduces to 3–4 significant digits. Although the data in
2/ = 60�

q�w �q�w hb,S

41.697 30.613 0.46005

128.96 85.669 4.3802

424.55 282.33 35.936

1035.7 775.28 162.18
�8 1180.7 1131.4 197.26
�72 1180.7 1175.8 197.26

7.3260 5.7175 0.051764

15.646 11.627 0.49400

43.775 29.906 4.2089

113.90 83.239 20.756
�7 135.13 128.49 26.552
�64 135.13 134.46 26.553

2.0829 1.6075 0.0079049

3.9276 3.0832 0.073146

7.7548 5.9321 0.61750

17.112 12.840 3.4118
�6 21.370 20.150 4.8794
�51 21.370 21.248 4.8795

1.2648 0.96744 0.0029075

2.4225 1.8972 0.025356

4.2811 3.4488 0.19150

6.9881 5.7907 0.97821
�5 8.2361 7.8698 1.4656
�45 8.2362 8.1996 1.4657

1.1719 0.89485 0.0023721

2.2584 1.7655 0.020239

3.9468 3.1999 0.14501

5.9779 5.1051 0.68804

0�5 6.8251 6.5690 1.0250
�44 6.8252 6.7996 1.0251

1.1625 0.88749 0.0023180

2.2418 1.7522 0.019721

3.9137 3.1751 0.14030

5.8771 5.0370 0.65820
�5 6.6824 6.4378 0.97911
�44 6.6825 6.6581 0.97915

1.1615 0.88667 0.0023120

2.2400 1.7507 0.019664

3.9101 3.1724 0.13977

5.8659 5.0295 0.65487
�5 6.6666 6.4232 0.97399
�44 6.6667 6.6423 0.97403
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Tables 3–5 are for a special case when the wall temper-

ature changes at �x0 ¼ 0, they can be also used when

�x0 > 0.

Another item observed is the behavior of the fric-

tional wall heat flux when MDa becomes too small.

Table 6 is prepared to show the limiting values of qw

Dh/(leU
2), �qwDh=ðleU 2Þ, and hb,s as MDa! 0. They

are obtained assuming the velocity in the porous passage

is to approach a constant value. The data, obtained in
Table 5

Selected heat transfer variables for isosceles triangular passages when

MDa �x NuD NuD hb,I

1/10000 0.0001 42.944 66.444 0.97377

0.001 17.205 28.252 0.89314

0.01 6.8508 11.309 0.63612

0.1 4.0841 5.2489 0.12251

1 4.0311 4.1545 6.07 · 10
10 4.0311 4.0435 5.72 · 10

1/1000 0.0001 32.777 49.802 0.98028

0.001 13.939 21.902 0.91612

0.01 6.1136 9.5007 0.68384

0.1 3.7057 4.6929 0.15303

1 3.6454 3.7521 3.03 · 10
10 3.6454 3.6561 3.07 · 10

1/100 0.0001 24.305 37.174 0.98524

0.001 10.698 16.491 0.93616

0.01 4.8457 7.3583 0.74503

0.1 2.9684 3.7386 0.22415

1 2.9097 2.9947 6.28 · 10
10 2.9097 2.9182 2.02 · 10

1/10 0.0001 20.228 31.359 0.98753

0.001 9.0448 13.946 0.94574

0.01 4.1029 6.2295 0.77944

0.1 2.4978 3.1550 0.28308

1 2.4490 2.5213 4.70 · 10
10 2.4490 2.4562 2.14 · 10

1 0.0001 19.439 30.219 0.98798

0.001 8.7209 13.453 0.94761

0.01 3.9621 6.0127 0.78623

0.1 2.4129 3.0470 0.29559

1 2.3666 2.4362 5.86 · 10
10 2.3666 2.3736 5.85 · 10

10 0.0001 19.351 30.090 0.98804

0.001 8.6846 13.398 0.94782

0.01 3.9465 5.9885 0.78699

0.1 2.4037 3.0351 0.29699

1 2.3576 2.4269 6.08 · 10
10 2.3576 2.3646 8.38 · 10

1 0.0001 19.341 30.076 0.98804

0.001 8.6805 13.391 0.94784

0.01 3.9447 5.9858 0.78707

0.1 2.4027 3.0338 0.29715

1 2.3566 2.4259 6.11 · 10
10 2.3566 2.3635 8.73 · 10
this manner, agrees satisfactorily with those in Fig.

5(a)–(c) when MDa = 10�4 and begins to gradually de-

part as MDa increases.

As expected, there is a significant heat flux variation

along each surface of these triangular passages. To show

the variations, the local wall heat flux is computed, when

2/ = 30�, for a different set of MDa values. The heat

flux input along a sidewall, shown in Fig. 1(b), is com-

puted using the relation,
2/ = 90�

q�w �q�w hb,S

60.072 42.852 0.70375

199.72 130.57 6.6866

657.91 438.32 54.556

1581.7 1189.1 245.25
�8 1802.2 1727.3 299.73
�71 1802.2 1794.7 299.73

9.8355 7.6743 0.077186

22.275 16.198 0.73777

65.982 44.505 6.2454

170.31 125.07 30.227
�7 200.64 191.02 38.504
�64 200.64 199.68 38.504

2.5107 1.9367 0.010753

4.7349 3.7080 0.10044

9.8395 7.3743 0.85779

23.025 17.038 4.7124
�6 28.819 27.146 6.6934
�51 28.819 28.652 6.6935

1.3138 1.0024 0.0032024

2.4934 1.9538 0.028218

4.4202 3.5519 0.21826

7.4799 6.1087 1.1599
�5 9.0082 8.5635 1.7798
�43 9.0084 8.9639 1.7799

1.1684 0.88977 0.0023736

2.2373 1.7486 0.020300

3.8971 3.1627 0.14644

5.9224 5.0466 0.71083
�5 6.8235 6.5517 1.0878
�42 6.8237 6.7965 1.0879

1.1535 0.87823 0.0022891

2.2113 1.7277 0.019494

3.8456 3.1239 0.13909

5.7674 4.9417 0.66377
�5 6.6009 6.3477 1.0136
�42 6.6011 6.5757 1.01373

1.1519 0.87695 0.0022797

2.2084 1.7254 0.019404

3.8398 3.1196 0.13827

5.7501 4.9300 0.65851
�5 6.5761 6.3250 1.0053
�42 6.5763 6.5511 1.0054



Table 6

Limiting dimensionless heat transfer quantities as MDa! 0

2/ (�) �x NuD NuD hb,I (MDa)q�w (MDa)�q�w (MDa)hb,S

30 0.0001 56.661 112.85 0.95586 0.0018657 0.0013154 1.6383 · 10�5

0.001 19.134 36.926 0.86269 0.0058046 0.0039080 1.5346 · 10�4

0.01 7.1327 12.669 0.60245 0.016806 0.011583 0.0012276

0.1 4.2219 5.5369 0.10918 0.037658 0.028862 0.0053646

1 4.1396 4.2826 3.63 · 10�8 0.042273 0.040656 0.0064710

10 4.1396 4.1539 6.92 · 10�73 0.042273 0.042111 0.0064710

60 0.0001 57.203 111.78 0.95627 0.0048584 0.0034153 0.000043078

0.001 19.091 36.977 0.86251 0.015276 0.010275 0.00040334

0.01 7.1573 12.688 0.60198 0.044224 0.030470 0.0032256

0.1 4.40350 5.6275 0.10529 0.099412 0.076106 0.014002

1 4.3865 4.5109 1.46 · 10�8 0.11111 0.10694 0.016667

10 4.3865 4.3989 3.83 · 10�77 0.11111 0.11069 0.016667

90 0.0001 56.659 112.12 0.95614 0.0075249 0.0053058 0.000066507

0.001 19.114 36.965 0.86255 0.023582 0.015863 0.00062284

0.01 7.1394 12.674 0.60231 0.068232 0.047023 0.0049820

0.1 4.2807 5.5642 0.10799 0.15304 0.11725 0.021729

1 4.2334 4.3678 2.58 · 10�8 0.17157 0.16505 0.026090

10 4.2334 4.2468 1.68 · 10�74 0.17157 0.17092 0.026090
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Fig. 6. Heat flux variation along z =H and z = Hy/W walls of

the triangular passage in Fig. 2 with 2/ = 30� due to wall

temperature change, when (a) �x ¼ 0:01 and (b) �x ¼ 0:1.
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qw ¼ krT �~n ¼ k½�ðoT=oyÞH=W þ ðoT=ozÞ	
ðH=W Þ2 þ 1

: ð35Þ

The abscissa of Fig. 6 is the distance y/W and the ordi-

nate is the dimensionless heat flux qwDh/[k(T2 � T1)].
The right side of Figs. 6–8 shows the heat flux along

the z = Hy/W surface and the left side is for the z = H

surface. The heat transfer data, tabulated in Tables 3–

5 and plotted in Figs. 2–5, describe the effects of the

circumferentially averaged heat flux. For example, the

circumferentially averaged heat flux due to a temperature

change at the wall, qwDh/[k(T2 � T1), is the product of

NuDhb;i ¼ ðhDh=keÞ½ðT b � T 2Þ=ðT 1 � T 2Þ	

since qw = h(T2 � Tb). Fig. 6 demonstrates the local wall
heat flux plotted along the perimeter of the triangular

passage; (x/Dh)/(ReDPr) is 0.01 for data in Fig. 6(a)

and it is 0.1 for those in 6(b). The graph shows an onset

of a cross-over, which is a remarkable feature. When

MDa = 1/10,000, the data in Fig. 6(a) are the highest

whereas in Fig. 6(b) those for MDa =1 have the high-

est values. As expected, the wall heat flux vector at the

corners vanishes since it has zero components in two dif-

ferent directions. Also, the data in Table 3 show that hb,i
becomes negligible when �x ¼ 1 and this is in contrast to
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Fig. 8. Heat flux variation along z =H and z = Hy/W walls of

the triangular passage in Fig. 2 with 2/ = 30� due to frictional
heating effects, when (a) �x ¼ 1 and (b) �x ¼ 1.
the effect of the frictional heating. The local values of

[qwDh/(leU
2)]1/2 along the circumference of the passage

are plotted in Fig. 7(a) and (b) when �x ¼ 0:01 and 0.1.
The data are relatively well behaved and they show sig-

nificant variations as (x/Dh)/(ReDPr) andMDa changes.

The fully developed values of the local heat flux are plot-

ted in Fig. 8(b). For comparison, similar data, when

�x ¼ 1, are plotted in Fig. 8(a). These last two sets indi-

cate that changes in the value of local heat flux become

small when �x > 1.

Often, it is customary to assume the wall temperature

change to begin at x = 0 while fluid enters a pipe at

x = �1. To meet this condition, the transformation of

the dimensionless axial coordinate, as appeared earlier,

considers an axial coordinate x � x0 where the wall tem-

perature changes. This permits the inclusion of the fric-

tional heating effects when x0 ! 1. Accordingly, one

can use the knowledge of heat transfer coefficient in

the absence of frictional heating to compute the effect

of wall temperature change at any location �x ¼ ½ðx�
x0Þ=Dh	=ðReDPrÞ. Then, one can include the contribution
of the frictional heating for any x0 by viewing �x in col-
umn 2 of Tables 3–5 to be �xþ �x0. These combined effects
provide a desirable flexibility and will simplify the pre-

sentation of data as it reduces the needed parameters

for each case. A proper combination of these two contri-

butions yields the value of bulk temperature. As an illus-

tration, using hb,W = (Tb,W � T1)/(T2 � T1) = 1�hb,I and
hb,S = [(Tb,S � T1)/(T2 � T1)]/(PrEc), one can determine
the bulk temperature from the relation

T b � T 1 ¼ ðT b;S � T 1Þ þ ðT b;W � T 1Þ: ð36Þ

Also, the combined effect of frictional heating and wall

temperature change to the local wall heat flux is

qw ¼ qw;S þ qw;I ð37Þ

and it includes the circumferentially averaged wall heat

flux. Finally, the average wall heat flux is

�qw ¼ �qw;S þ �qw;I : ð38Þ
6. Boundary conditions of the second kind

The methodology presented here is applicable to the

case when the boundary condition is of the second or

third kind. All computational steps leading to the

Green�s function solution, Eq. (22), remain the same ex-
cept for the selection of the basis function. As an exam-

ple, Beck et al. [3, Chapter 11] describes a procedure for

finding the basis functions when one surface is having a

boundary condition of the second kind. Therefore, for

the boundary conditions of the second kind, this method

provides:



Table 7

Computed heat transfer to fluid flow in parallel-plate channels and circular pipes with constant wall heat flux

ðx=DhÞ
ReDPr

Parallel-plate channels Circular pipes

MDa, (S*) NuD hw,S � hb,S MDa, (S*) NuD hw,S � hb,S

10�5 1 (3) 69.08 0.0170 1 (8) 59.62 0.0101

5 · 10�5 40.42 0.0472 34.49 0.0285

10�4 32.16 0.0725 27.27 0.0442

5 · 10�4 19.11 0.1875 15.81 0.1192

10�3 15.43 0.2739 12.54 0.1794

5 · 10�3 9.988 0.5713 7.494 0.4288

10�2 8.803 0.6973 6.148 0.5907

5 · 10�2 8.236 0.7714 4.514 0.9516

10�1 8.235 0.7714 4.375 0.9963

1 8.235 0.7714 4.364 1.000

10�5 10�1 (14.601) 78.92 0.0268 10�1 (20.809) 66.03 0.0142

5 · 10�5 45.96 0.0691 37.98 0.0386

10�4 36.44 0.1013 29.98 0.0585

5 · 10�4 21.43 0.2273 17.32 0.1456

10�3 17.20 0.3072 13.72 0.2093

5 · 10�3 10.94 0.5326 8.170 0.4368

10�2 9.560 0.6183 6.698 0.5636

5 · 10�2 8.862 0.6715 4.934 0.8110

10�1 8.861 0.6716 4.793 0.8383

1 8.861 0.6716 4.783 0.8403

10�5 10�2 (111.11) 103.9 0.0684 10�2 (123.41) 83.31 0.0342

5 · 10�5 59.85 0.1504 48.35 0.0839

10�4 47.12 0.2012 38.12 0.1194

5 · 10�4 27.09 0.3426 21.86 0.2433

10�3 21.46 0.4030 17.23 0.3122

5 · 10�3 13.15 0.5112 10.16 0.4770

10�2 11.28 0.5407 8.298 0.5358

5 · 10�2 10.26 0.5601 6.142 0.6164

10�1 10.26 0.5601 5.994 0.6231

1 10.26 0.5601 5.986 0.6235

10�5 10�3 (1032.7) 143.9 0.1787 10�3 (1066.4) 114.1 0.1004

5 · 10�5 80.34 0.3015 66.48 0.2012

10�4 62.28 0.3531 51.68 0.2562

5 · 10�4 34.12 0.4446 28.82 0.3840

10�3 26.34 0.4698 22.38 0.4291

5 · 10�3 15.17 0.5046 12.65 0.4987

10�2 12.72 0.5128 10.16 0.5159

5 · 10�2 11.32 0.5186 7.333 0.5361

10�1 11.32 0.5186 7.151 0.5377

1 11.32 0.5186 7.141 0.5378

10�5 10�4 (10101) 193.0 0.3373 10�4 (10203) 158.3 0.2446

5 · 10�5 102.2 0.4244 88.52 0.3563

10�4 76.96 0.4483 67.58 0.3977

5 · 10�4 39.29 0.4812 35.54 0.4614

10�3 29.51 0.4891 26.83 0.4773

5 · 10�3 16.17 0.4996 14.28 0.4987

10�2 13.37 0.5021 11.24 0.5036

5 · 10�2 11.77 0.5039 7.917 0.5094

10�1 11.77 0.5039 7.708 0.5098

1 11.77 0.5039 7.697 0.5099
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1. For flow between two parallel plates with walls

located at y = ±H, the basis functions are

fj ¼ fðj� 1Þ½1� ðy=HÞ2	 þ 1gðy=HÞ2ðj�1Þ

with j ¼ 1; 2; . . . ;N :

2. For a circular pipe with radius r0, the basis functions

are similar,

fj ¼ fðj� 1Þ½1� ðr=r0Þ2	 þ 1gðr=r0Þ2ðj�1Þ

with j ¼ 1; 2; . . . ;N :

3. For an elliptical passage with the wall being at (y/

a)2 + (z/b)2 = 1, the basis functions are

½b2ðmj � 1Þ þ a2ðnj � 1Þ	½1� ðy=aÞ2 � ðz=bÞ2	
a2 � y2ð1� b2=a2Þ

� 1

( )

� y2ðmj�1Þz2ðnj�1Þ;

when using all combinations of mj and nj.

Indeed, this method provides the following basis

functions for a rectangular passage with walls located

at y = ±a and z = ±b,

fj ¼ 1þ ðmj � 1Þð1� y2=a2Þ
� �
� 1þ ðnj � 1Þð1� z2=b2Þ
� �

y2ðmj�1Þz2ðnj�1Þ;

when all surfaces of a rectangle have the boundary con-

dition of the second kind. Also, a similar procedure but

with a minor modification is available in [3, p. 345] if

these boundary conditions are of the third kind.

Although all these basis functions were tested and they

performed well, only sample data are to appear next.

For triangular passages, the method in [3] can define a

set of basis functions when the heat flux is prescribed

on one side of a triangular passage and there will be dif-

ferent sets depending on the location of the boundary

condition of the second kind.

The Nusselt number values are computed, for flow

through parallel-plate channels and for circular pipes,

by modifying the procedure presented in Example 1. A

single program written in Mathematica [13] performed

this task. The local Nusselt number values in the absence

of frictional heating are obtained at different (x/Dh)/

(ReDPr) and for differentMDa values. The data in Col-

umn 3 of Table 7 are for parallel-plate channels and

those in Column 6 are for circular pipes. The computed

values are in general agreement with those reported in

[9]. When heat flux is prescribed, the average wall heat

flux �qw, at any location x, is related to the bulk temper-
ature by the relation �qw;WCx ¼ qUAcpðT b;W � T 1Þ that
becomes hb;W ¼ 4�x�q�w;W; for the case of constant wall
heat flux, �q�w ¼ q�w. Once hb is known, the definition of
heat transfer coefficient, qw,W = h(Tw,W � Tb,W), leads

to the relation hw;W ¼ hb;W þ 4q�w;W=NuD while both

hb,W and NuD depend on �x.
In the computation of the contribution of frictional

heating, it is hypothesized that qw,S = 0 everywhere

along the channel. The only quantity that remains to

be determined is Tw,S and, in the dimensionless form,

it becomes hw,S = ke(Tw,S � T1)/(leU
2). Table 7 contains

the values hw,S � hb,S tabulated at different (x/Dh)/

(ReDPr) andMDa values. The tabulated data show that,

for each MDa, this quantity approaches a constant

value as x increases. These values of hw,S are determinis-
tic since hb,S = S*(x/Dh)/(ReDPr) and S*, in Eq. (27b),
depend only on MDa. The numerical value of each S*

is within parentheses in Columns 2 and 5 of Table 7

listed after the corresponding MDa value and they are

accurate to all digits listed for largerMDa and �x values.
The data show that the value of hw,S � hb,S becomes neg-
ligible in comparison with S* as MDa decreases.
7. Conclusion

For flow through porous passages, the hydrodynamic

entrance region is expected to be small. This causes the

velocity profile to quickly reach the fully developed con-

dition and, therefore, the governing momentum equation

becomes linear. This presentation demonstrated that the

Green�s function solution method is a powerful tool to
accommodate many aspects of the heat transfer problems

associated with flow through porous passages. The capa-

bility of this solution is enhanced when the Green�s func-
tion is computed by extending the method of weighted

residuals. The numerical data attest that solutions with

a high degree of accuracy are attainable with relative

ease. Furthermore, this methodology is applicable to var-

ious other heat transfer problems when the energy equa-

tion is linear. An example is its application to laminar

MHD flow through a parallel-plate channel [16].
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